0%

论文总结

基础研究

  1. DDPM => Denoising Diffusion Probabilistic Models
    1. 内网
    2. 外网
  2. DDIM => Denoising Diffusion Implicit Models
    1. 内网
    2. 外网
  3. NCSN => Generative Modeling by Estimating Gradients of the Data Distribution
    1. 内网
    2. 外网
  4. Score-Based SDE => SCORE-BASED GENERATIVE MODELING THROUGH STOCHASTIC DIFFERENTIAL EQUATIONS
    1. 内网
    2. 外网
  5. class-Guidence => diffusion-models-beat-gans-on-image-synthesis
    1. 内网
    2. 外网
  6. class-free Guidence => Classifier-Free Diffusion Guidance.
    1. 内网
    2. 外网
  7. IDM => High-Resolution Image Synthesis with Latent Diffusion Models.
    1. 内网
    2. 外网
  8. EDM => Elucidating the Design Space of Diffusion-Based Generative Models
    1. 内网
    2. 外网
  9. GLIDE Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models
    1. 内网
    2. 外网
  10. iDDPM => Improved Denoising Diffusion Probabilistic Model
    1. 内网
    2. 外网
    3. 提出cos余弦加噪
    4. 提出去噪时学习方差为$\beta_{t}$与$\tilde{\beta}_{t}$之间的插值:$\sum_{\theta}(x_{t}, t) = \exp(v \log\beta_{t} + (1 - v)\log\tilde{\beta}_{t})$,即学习每一时间步的$v$
  11. A-DPM => Analytic-DPM an Analytic Estimate of the Optimal Reverse Variance in Diffusion Probabilistic Models.
    1. 内网
    2. 外网
    3. 无需训练的推理框架,使用蒙特卡罗方法和预训练的基于得分的模型来估计方差和KL散度的解析形式
    4. 推导了最优方差的上下界,并对估计值进行裁剪以获得更好的结果
  12. DiT => Scalable Diffusion Models with Transformers
    1. 内网
    2. 外网
  13. Flow-Matching => FLOW MATCHING FOR GENERATIVE MODELING.
    1. 内网
    2. 外网
  14. Rectified Flow => Flow Straight and Fast:Learning to Generate and Transfer Data with Rectified Flow
  15. Shortcut Models => One Step Diffusion via Shortcut Models.
    1. 内网
    2. 外网
  16. Mean-Flow => Mean Flows for One-step Generative Modeling
    1. 内网
    2. 外网
  17. ShortDF => Optimizing for the Shortest Path in Denoising Diffusion Model
    1. 内网
    2. 外网
  18. RayFlow Instance-Aware Diffusion Acceleration via Adaptive Flow Trajectories
    1. 内网
    2. 外网

加速采样

Training-Free

基于求解器

  1. iPNDMs => Pseudo Numerical Methods for Diffusion Models on Manifolds.
    1. 内网
    2. 外网
  2. DEIS => FAST SAMPLING OF DIFFUSION MODELS WITH EXPONENTIAL INTEGRATOR
    1. 内网
    2. 外网
  3. DPM-Solver => DPM-Solver-A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps.
    1. 内网
    2. 外网
  4. DPM-Solver++ => DPM-Solver-Plus-Plus-Fast Solver for Guided Sampling of Diffusion Probabilistic Models
    1. 内网
    2. 外网
  5. AM => Boosting Diffusion Models with an Adaptive Momentum Sampler
    1. 内网
    2. 外网

基于蒸馏

基于特征重用\模型简化

  1. FreeU => FreeU Free Lunch in Diffusion U-Net
    1. 内网
    2. 外网
  2. DeepCache => DeepCache Accelerating Diffusion Models for Free.
    1. 内网
    2. 外网
  3. Skip-Tuning => The Surprising Effectiveness of Skip-Tuning in Diffusion Sampling
    1. 内网
    2. 外网
  4. Faster Diffusion-Rethinking the Role of the Encoder
    1. 内网
    2. 外网
  5. increment-calibrated caching => Accelerating Diffusion Transformer via Increment-Calibrated Caching with Channel-Aware Singular Value Decomposition
    1. 内网
    2. 外网
  6. BlockDance => BlockDance Reuse Structurally Similar Spatio-Temporal Features to Accelerate Diffusion Transformers
    1. 内网
    2. 外网
  7. CacheQuant => CacheQuant Comprehensively Accelerated Diffusion Models
    1. 内网
    2. 外网
  8. DreamCache => Finetuning-Free Lightweight Personalized Image Generation via Feature Caching
    1. 内网
    2. 外网
  9. PFDiff => PFDiff: Training-Free Acceleration of Diffusion Models Combining Past and Future Scores
    1. 内网
    2. 外网
  10. DiffCR => Layer and Timestep-Adaptive Differentiable Token Compression Ratios for Efficient Diffusion Transformers
    1. 内网
    2. 外网

基于时间步搜索

  1. Auto Diffusion => AutoDiffusion Training-Free Optimization of Time Steps and Architectures for Automated Diffusion Model Acceleration
    1. 内网
    2. 外网
  2. GITS => On-the-Trajectory-Regularity-of-ODE-based-Diffusion-Sampling
    1. 内网
    2. 外网

Training-Based

基于求解器_

基于蒸馏_

  1. CM => Consistency Models.
    1. 内网
    2. 外网
  2. 两阶段无分类器引导模型的蒸馏 => On Distillation of Guided Diffusion Models
    1. 内网
    2. 外网
  3. CTM => Consistency Trajectory Models Learning Probability Flow ODE Trajectory of Diffusion.
    1. 引入对抗损失和去噪分数匹配损失
    2. 内网
    3. 外网
  4. SFD => Simple and Fast Distillation of Diffusion Models
    1. 内网
    2. 外网
  5. ARD => Autoregressive Distillation of Diffusion Transformers
    1. 内网
    2. 外网
  6. NitroFusion => NitroFusion High-Fidelity Single-Step Diffusion through Dynamic Adversarial Training
    1. 内网
    2. 外网
  7. Random Conditioning for Diffusion Model Compression with Distillation
    1. 内网
    2. 外网

Training-Efficient

_基于求解器

  1. S4S => S4S Solving for a Fast Diffusion Model Solver
    1. 内网
    2. 外网

_基于蒸馏

  1. Amed => Fast ODE-based Sampling for Diffusion Models in Around 5 Steps
    1. 内网
    2. 外网
  2. PAS => Diffusion Sampling Correction via Approximately 10 Parameters
    1. 内网
    2. 外网
  3. Morse => Morse Dual-Sampling for Lossless Acceleration of Diffusion Models
    1. 内网
    2. 外网

加速训练

基于训练步长

  1. SpeeD => A Closer Look at Time Steps is Worthy of Triple Speed-Up for Diffusion Model Training
    1. 内网
    2. 外网
  2. 2025-CVPR-Adaptive Non-Uniform Timestep Sampling for Diffusion Model Training
    1. 内网
    2. 外网

图像编辑

  1. 2021-CVPR-Palette Image-to-Image Diffusion Models
    1. 内网
    2. 外网
  2. 2023-ICLR-Prompt-to-Prompt Image Editing with Cross Attention Control
    1. 内网
    2. 外网
  3. 2024-CVPR-Style Injection in Diffusion A Training-free Approach for Adapting Large-scale Diffusion Models for Style Transfer
    1. 内网
    2. 外网